

PRAWO POWSZECHNEGO CIĄŻENIA

Zobacz spadek swobodny w aplikacji phyphox

45 minut (1 godzina lekcyjna)

szkoła ponadpodstawowa (klasy I–II)

fizyka

siła grawitacji | spadek swobodny | przyspieszenie grawitacyjne

www.esero.kopernik.org.pl

PRAWO POWSZECHNEGO CIĄŻENIA

Zobacz spadek swobodny w aplikacji phyphox

Autorka: Marta Pietrow

Opracowane dla ESERO-Polska

Poruszane watki

- opis oddziaływania grawitacyjnego
- siła grawitacji

synteza newtonowska

- prawo powszechnej grawitacji
- spadek swobodny
- przyspieszenie ziemskie

Rozwijane umiejętności

- dokonywanie obserwacji
- formułowanie wniosków
- rozwijanie współpracy w grupie
 - rozwijanie myślenia krytycznego
 - korzystanie z technologii
 - pogłębianie znajomości praw fizyki i ich zastosowania do wyjaśniania procesów i zjawisk w przyrodzie

Metody pracy

- metoda doświadczalna
- praca w grupach
- dokonywanie pomiarów

Czas

45 minut (1 godzina lekcyjna)

Niezbędne materiały

- arkusz do dyskusji załącznik 1
- instrukcja doświadczenia (dla każdej grupy) załącznik 2
- instrukcja doświadczenia (dla każdej grupy) załącznik 3
- smartfon lub tablet z dostępem do internetu (dla każdej grupy)
- stoper
- zestaw pomiarowy (dla każdej grupy 4–5-osobowej)
 - waga
 - taśma miernicza

- smartfon z aplikacją phyphox
- woreczek strunowy lub pudełko o wymiarach około 10×15 cm
- folia bąbelkowa lub inne materiały amortyzujące
- przedmioty potrzebne do demonstracji spadku swobodnego
 - · 2 jabłka

Miejsce

sala lekcyjna

- książka lub zeszyt
- projektor lub tablica interaktywna

Przygotowanie zajęć

Zainstaluj na smartfonie aplikację phyphox i zapoznaj się z jej działaniem. Jest ona nieodpłatna i dostępna na wszystkie systemy operacyjne. Dowiedz się wcześniej, jak działa akcelerometr w telefonie (https://techfresh.pl/ jak-dziala-akcelerometr-w-telefonie/).

Po zainstalowaniu aplikacji zobaczysz aktywne doświadczenia (zależy to od czujników, w które wyposażony jest dany smartfon). W zaproponowanym doświadczeniu wykorzystamy funkcjonalność "Przyspieszenie (bez g)". Aplikacja ma proste menu w języku polskim i krótką instrukcję do wykonania eksperymentu.

Wskazówka

Zwróć uwagę uczennic/uczniów, by byli ostrożni. W zadaniu będą upuszczać telefon z wysokości ok. 2 metrów z uruchomioną aplikacją. Następnie zadaniem będzie przeanalizowanie otrzymanego wykresu dla poszczególnych faz ruchu.

Lekcję zacznij od aktywności **Sprawdź swojego sąsiada**, która wprowadzi uczennice/uczniów w zagadnienie powszechnego ciążenia, pobudzi do myślenia i zaciekawi. Chodzi w niej o nawiązanie współpracy, uruchomienie kreatywności i działanie skłaniające do wyrażania stwierdzeń językiem fizyki (uczennice/ uczniowie lepiej zapamiętują to, co powiedzą, a nie to, o czym pomyślą). Różne wypowiedzi młodych osób pozwolą ci odnieść się do potencjału grupy. W tym zadaniu wykorzystasz stoper.

Do przeprowadzenia ćwiczenia **Wszystko spada** wykorzystasz komputer z projektorem do wyświetlenia arkusza do dyskusji (załącznik 1). Klasę podziel na 4–5-osobowe zespoły.

Wskazówka

Jeśli nie dysponujesz projektorem ani tablicą interaktywną, wydrukuj lub prześlij uczennicom/uczniom arkusz do dyskusji. Niech każda grupa wyświetli go na ekranie swojego komputera.

W ćwiczeniu **Spadanie czy unoszenie** młode osoby pracują w grupach, wykorzystując zestaw pomiarowy. Przeprowadzą doświadczenie sprawdzające, z jakim przyspieszeniem spadają ciała na podłoże. Uczennice/uczniowie korzystają z instrukcji (załącznik 2).

Lekcję zakończ aktywnością **Przekonaj swojego sąsiada**. Będzie to podsumowanie na podstawie argumentów naukowych dostarczonych podczas zajęć.

Sprawdź swojego sąsiada

Zacznij od ćwiczenia na rozgrzewkę. Podziel klasę na pary. Każdej zadaj to samo pytanie: *co spadnie szybciej z wysokości 1 piętra: kula drewniana czy kula oło-wiana o jednakowych rozmiarach?* Na razie daj dowolność uczennicom/uczniom, niech spróbują na nie odpowiedzieć bez dodatkowych informacji. Dla porządku ustal, że przez 1 minutę mówi osoba po lewej stronie, zaczynając wypowiedź od: "moim zdaniem...". Po minucie następuje zmiana. Czas odmierzaj stope-rem. Przysłuchuj się wypowiedziom uczennic/uczniów i notuj najtrafniejsze odpowiedzi.

Podsumuj wypowiedzi uczennic/uczniów, odnosząc się do zasłyszanych w ćwiczeniu opinii typu: "spadną jednocześnie", "spadną w tym samym czasie". Zacytuj wypowiedzi świadczące o niezależności czasu spadania od masy ciał. Jeśli część uczennic/uczniów uważała inaczej, powiedz, że podczas dzisiejszych zajęć spróbują udowodnić lub obalić swoje zdanie przedstawione na początku lekcji.

Wszystko spada

Wyświetl na tablicy oś czasu (załącznik 1). Omów z uczennicami/uczniami rozwój teorii ruchów ciał. Nawiąż do pytań, które stawiali sobie uczeni setki lat temu. Zacznij od Arystotelesa, umieszczając infografikę w odpowiednim miejscu. Kontynuuj: Ptolemeusz, Kopernik, Galileusz, Kepler, Newton, Halley, prawo grawitacji Newtona, Cavendish, na koniec phyphox.

Arystoteles

Żył przed naszą erą. Dzielił ruch na naturalny – wynikający z natury obiektu i ruch gwałtowny – jako skutek pchania lub ciągnięcia. Innym prawom miał podlegać ruch ciał niebieskich. Ziemia niezmiennie znajduje się w swym właściwym miejscu i nie może się poruszać. Nie sposób wyobrazić sobie siły zdolnej do jej poruszenia. Poglądy Arystotelesa były początkiem myślenia naukowego.

Ptolemeusz

Korzystając z teorii swojego poprzednika, Ptolemeusz sformułował pogląd geocentrycznego wszechświata. Stworzył nawet mapę wszechświata z Ziemią jako punktem centralnym. Jego teoria zawierała formuły matematyczne pozwalające obliczyć położenie planet.

Kopernik

Kres poglądom, że Ziemia trwa w bezruchu, a niebiosa obracają się wokół niej, położył Kopernik, żyjący w renesansie. Sformułował on swoją teorię o ruchu Ziemi wokół Słońca. Na podstawie obserwacji astronomicznych ruchu Słońca, Księżyca i planet na tle nieba doszedł do wniosku, że to Ziemia (i inne planety) krążą wokół Słońca (układ heliocentryczny). Kopernik opierał się na zastanej wiedzy i nie mógł pogodzić ruchu Ziemi ze znanymi wówczas prawami ruchu, które nie znały pojęcia bezwładności. Zdecydował się na publikację swojej rewolucyjnej pracy pod koniec życia, zmieniając poglądy na obraz Wszechświata.

Galileusz

Wychodząc od krytyki koncepcji ruchów Arystotelesa i popierając teorie Kopernika, kolejny uczony – Galileusz dostarczył dowodów doświadczalnych, że czas spadania dla wszystkich ciał na Ziemi jest jednakowy (jeśli nie brać pod uwagę niewielkich różnic związanych z oporem powietrza).

Kepler

Rozwój poglądów i teorii matematycznych pozwolił Keplerowi uściślić teorię Kopernika. Ustalił, że orbity planet są elipsami i planeta porusza się najszybciej w punkcie najbliższym Słońcu (punkt przysłoneczny – peryhelium). Jednak nie wiedział, co zmusza planetę do takiego zachowania. Stworzył on trzy bardzo ważne prawa dotyczące ruchu ciał.

Newton i Halley

Newton obserwował planety za pomocą teleskopu zwierciadlanego swojej konstrukcji (teleskop Newtona) i starał się znaleźć przyczynę utrzymywania się planet na orbitach. Sformułował trzy zasady dynamiki. Zagadnienie ruchu planet rozważał również astronom Halley. Razem z Newtonem postulował istnienie siły centralnej utrzymującej planety na swoich orbitach. Astronom prowadził obserwacje komety (później nazywanej kometą Halleya). Dane z 1680 roku skłoniły Newtona do opisania tej siły w dziele jego życia: "Matematyczne zasady filozofii przyrody". Siłę przyciągającą Newton nazwał siłą grawitacji, a grawitację uznał za powszechną właściwość czegoś, co ma masę, tłumacząc ruch ciał niebieskich i wyjaśniając utrzymywanie się Księżyca na orbicie ziemskiej oraz ruch Ziemi na orbicie okołosłonecznej. W ten sposób sformułował swoje prawo

powszechnego ciążenia, które głosi: *"Każdy obiekt we wszechświecie przyciąga każdy inny obiekt z siłą, która jest wprost proporcjonalna do iloczynu ich mas i odwrotnie proporcjonalna do kwadratu odległości między ich środkami"*. Znając masę dwóch ciał i odległość między nimi, można obliczyć siłę ich wzajemnego przyciągania. Prawo to wyjaśnia również spadek ciał na Ziemię.

Cavendish

Zależność wyrażającą prawo powszechnej grawitacji można zastąpić równością, wprowadzając współczynnik proporcjonalności G (uniwersalna stała grawitacji), którego wartość doświadczalnie wyznaczył Cavendish. W tym celu użył on dwóch kul z ołowiu, których delikatne przyciąganie mierzył za pomocą wagi skręceń (eksperyment Cavedisha). Wartość tej stałej z większą dokładnością wyznaczył Jolly, modyfikując metodę poprzednika.

Korzystając z ewolucji poglądów na przestrzeni wieków i zdobyczy techniki, dziś za pomocą smartfona możemy wykonać zmodyfikowane doświadczenie Galileusza i potwierdzić powszechność grawitacji odpowiedzialnej za rezultaty eksperymentu ze swobodnym spadaniem.

Wskazówka

Jeżeli uważasz, że w klasie lepiej sprawdzi się uzupełnienie osi czasu przez młode osoby, możesz podzielić klasę na 4–5-osobowe grupy, a grafikę pociąć i rozdać jako puzzle do uzupełnienia osi czasu (załącznik 1). Uczennice/uczniowie przez 5 minut pracują, a następne sprawdzają chronologię zdarzeń.

Wyjaśnij, że dzięki grawitacyjnemu przyciąganiu spadające ciała przyspieszają w kierunku Ziemi. Siła, z jaką Ziemia przyciąga wszystkie ciała, jest proporcjonalna do iloczynu mas tych ciał i odwrotnie proporcjonalna do kwadratu odległości między nimi, co stanowi treść prawa powszechnej grawitacji. Możemy je zapisać, używając współczynnika proporcjonalności G – stałej grawitacji:

 $F = G - \frac{m_1 m_2}{r^2}$, zgodnie z oznaczeniami na infografice.

Pamiętajmy, że zgodnie z II zasadą dynamiki, jeżeli na ciało m działa siła *F*, to porusza się ono z przyspieszeniem proporcjonalnym do tej siły. Przyspieszenie ciała wywołane siłą grawitacji oznaczamy *g* i jest to stosunek ciężaru do masy ciała:

$$g = \frac{F}{m}$$

Rozważ spadek jabłka z wysokości h na Ziemię:

F - siła przyciązania wzajemnego między Ziemią i jabłkami

$$F = \frac{G M_z m}{r_2}$$

pod wpływem siły F jabłko porusza się z przyspieszeniem

$$\varsigma = \frac{f}{m} = \frac{\frac{G M_z m}{r^2}}{m} = \frac{G M_z}{r^2}$$

korzystając z założenia r $\approx R_z$, możemy zapisać:

$$s = \frac{G M_z}{R_z}$$

Dlatego przyspieszenie przy spadku swobodnym nie zależy od masy ciała.

Spadanie czy unoszenie

Podziel klasę na 4–5-osobowe grupy i rozdaj każdej zestaw pomiarowy oraz instrukcję doświadczenia (załącznik 2). Uczennice/uczniowie pracują, korzystając z instrukcji.

Zapoznaj się z przebiegiem doświadczenia

Przedstaw krótko przebieg doświadczenia i daj czas zespołom na zapoznanie się z instrukcją oraz działaniem aplikacji phyphox.

W doświadczeniu zespoły zmierzą przyspieszenie spadających przedmiotów o różnych masach. Pomocny w tym będzie czujnik (akcelerometr) wbudowany w smartfon wykorzystywany w phyphox. Aplikacja działa w ten sposób, że na wyświetlaczu pokazuje wartość przyspieszenia całkowitego lub jego składowe. Użyj zakładki "przyspieszenie całkowite". Po uruchomieniu aplikacji i eksperymentu "przyspieszenie (bez g)" sprawdź, poruszając smartfonem, zmiany na wykresie. Trzymając telefon nieruchomo, na wykresie widzisz, że przyspieszenie wynosi zero. Niech zespoły podrzucą delikatnie telefon i sprawdzą, jak wygląda wykres. Zastanówcie się razem, który fragment wykresu będzie potrzebny do analizy w tym doświadczeniu. Gdy wszyscy będą wiedzieli, jak prowadzić odczyt, przejdź do wykonania doświadczenia.

Przygotowanie:

- 1. Sprawdź, czy grupy mają: smartfon z aplikacją phyphox, woreczek zamykany lub pudełko, 2 jabłka, książkę (może być podręcznik do fizyki lub inny przedmiot, który zostanie umieszczony w woreczku) oraz materiały do amortyzacji.
- 2. Grupa ustala, z jakiej wysokości h (minimum 2 metry) będzie upuszczać pudełko. Przypomnij, by zespoły starały się zachować takie same warunki przy każdym pomiarze.
- Zespoły dzielą zadania: kto upuści pudełko z wysokości, kto będzie odpowiedzialny za złapanie pudełka przy podłożu, kto będzie prowadził zapisy. Niech zastanowią się, jak zamortyzują upadek smartfona (mogą ułożyć "poduszkę" z plecaków).
- 4. Otwierają odpowiedni eksperyment w aplikacji.
- 5. Wkładają do pudełka smartfon i 1 jabłko w taki sposób, żeby przed upuszczeniem uruchomić eksperyment przyciskiem ▶. Pomiar zatrzymują przyciskiem pauzy po upadnięciu układu na podłoże.

- 6. Zespoły wyjmują smartfon z pudełka i odczytują z wykresu wartość przyspieszenia (powiększą wykres, rozsuwając go dwoma palcami aż do uzyskania możliwości właściwego odczytu).
- 7. Zapisują wyniki z dokładnością do części setnych w tabeli z arkusza ćwiczeniowego (załącznik 2). W ten sposób wykonują ok. 10 pomiarów.
- 8. W powyższy sposób wykonują pomiary dla wszystkich przedmiotów.
- 9. Obliczają wartość średnią przyspieszenia.
- 10. Porównują wyniki otrzymane dla różnych przedmiotów.

Pokaż filmik o mikrograwitacji – link znajduje się w wykazie na końcu scenariusza. Opowiedz, że to samo dzieje się w ich pudełkach. Porozmawiaj o tym, dlaczego wydaje się, że przez chwilę rzeczy w pudełku się unoszą. Opowiedz, czym jest mikrograwitacja.

Jeśli wystarczy czasu, niech zespoły przykleją do jednej ze ścianek telefon z włączoną kamerą, tak by widzieć wnętrze pudełka. Niech włożą do środka dwa jabłka i nagrają spadek układu pomiarowego, najlepiej w funkcji "zwolnione tempo".

ģ

Ciekawostka

Jednym z głównych zadań Międzynarodowej Stacji Kosmicznej jest prowadzenie badań naukowych w warunkach mikrograwitacji, niemożliwych do osiągnięcia na Ziemi w sposób długotrwały. Mają one pozwolić na udoskonalenie metod prowadzenia upraw (uprawy hydroponiczne), poznanie zachowań ludzkiego organizmu wystawionego na długotrwały brak grawitacji (a więc i możliwość wynalezienia nowych leków) oraz badania różnych technologii.

Podsumowanie

Uczennice/uczniowie z każdej grupy odczytują wynik otrzymanego przyspieszenia ziemskiego. Porównujemy go z tablicami fizycznymi i przypominamy, od czego zależy wartość tej stałej fizycznej. Zakończ zajęcia ćwiczeniem **Przekonaj swojego sąsiada**. Młode osoby dyskutują w parach. Zadaj pytanie: *Czy wszystkie ciała z naszego eksperymentu spadają na Ziemię z takim samym przyspieszeniem?* Uczennica/uczeń po lewej przekonuje swojego sąsiada, następnie zamieniają się rolami. Poproś, by wykorzystali obserwacje z dzisiejszej lekcji.

Inne warianty realizacji scenariusza

1. Przyspieszenie ziemskie można wyznaczyć również, korzystając ze wzoru na drogę w ruchu jednostajnie przyspieszonym: $g = \frac{2h}{t^2}$. Zatem mierząc czas spadku przy ustalonej wysokości, możemy otrzymać wartość przyspieszenia, którą następnie porównasz z wyznaczoną przez aplikację wartością.

Czas spadku możemy odczytać z wykresu a(t), który wyświetla aplikacja. Skorzystaj z karty doświadczenia (załącznik 3).

- 2. Zajęcia można poprowadzić w formie pokazu, korzystając z możliwości, jakie daje aplikacja phyphox. Umożliwia ona bezpośrednie połączenie (za pomocą Wi-Fi) urządzenia pomiarowego z komputerem. Po rozwinięciu "trzech kropek" w menu zezwalamy na dostęp zdalny. W ten sposób otrzy-mujemy adres URL, który po wprowadzeniu do przeglądarki komputera pozwala na obserwację widoku ekranu smartfona na ekranie komputera lub tablicy multimedialnej. Może to być forma zajęć np. na niespodziewane zastępstwo.
- 3. Dysponując dwiema kulami o jednakowych rozmiarach wykonanymi ze stali i z drewna (można je nabyć w sklepie z akcesoriami do karniszy w kategorii: zakończenia; zwróć uwagę, żeby kule były pełne), na koniec zajęć pokaż ich jednoczesny spadek. Pokaz warto nagrać w trybie "zwolnione tempo", co jednoznacznie pokaże równoczesny moment upadku obu kul na podłoże. Zadanie to można przekazać uczennicom/uczniom jako dodatkową aktywność w domu.
- 4. Na zakończenie zajęć warto pokazać spadające ciała zamknięte w pudełku. Dobrze, gdy pudełko ma rozmiary minimum 20×30×40 cm. Włóż do środka smartfon z uruchomianą aplikacją pomiaru przyspieszenia, jabłko, drewnianą kulę (stalowa może uszkodzić smartfon). Do zapisu zachowania się ciał podczas spadku użyj drugiego smartfona, który nagra wideo. Uruchom nagranie i przyklej smartfon taśmą do wewnętrznej ściany pudełka, kierując kamerę na elementy znajdujące się w pudełku. Zamknij pudełko i podrzuć. Na nagraniu odszukaj moment spadku swobodnego, który w układzie odniesienia związanym z pudełkiem wygląda jakby ciała wewnątrz unosiły się. Zadanie to można przekazać uczennicom/uczniom jako dodatkową aktywność do wykonania w domu.

Wykaz przydatnych linków:

- Strona główna wykorzystywanej aplikacji: https://phyphox.org/
- Multimedialne środowisko nauczania fizyki dla szkół ponadpodstawowych: http://ilf.fizyka.pw.edu.pl/
- Czym są loty paraboliczne: https://www.crazynauka.pl/loty-paraboliczne-10-minut-prawdziwejniewazkosci/
- Zjawisko mikrograwitacji: https://www.youtube.com/watch?v=Np0opSGF8Jw

Odniesienie do podstawy programowej

Cele kształcenia – wymagania ogólne

I. Wiedza.

2) Poznanie różnych sposobów prowadzenia obserwacji i orientacji w terenie.

II. Umiejętności i stosowanie wiedzy w praktyce.

1) Prowadzenie obserwacji i pomiarów w terenie w tym korzystanie z różnych pomocy: planu, mapy, lupy, kompasu, taśmy mierniczej, lornetki itp.

2) Wykonywanie obserwacji i doświadczeń zgodnie z instrukcją (słowną, tekstową i graficzną), właściwe ich dokumentowanie i prezentowanie wyników.

3) Analizowanie, dokonywanie opisu, porównywanie, klasyfikowanie, korzystanie z różnych źródeł informacji (np. własnych obserwacji, badań, doświadczeń, tekstów, map, tabel, fotografii, filmów, technologii informacyjno-komunikacyjnych).

III. Kształtowanie postaw – wychowanie.

1) Uważne obserwowanie zjawisk przyrodniczych, dokładne i skrupulatne przeprowadzenie doświadczeń, posługiwanie się instrukcją przy wykonywaniu pomiarów i doświadczeń, sporządzanie notatek i opracowywanie wyników.

FIZYKA – zakres podstawowy

III. Grawitacja i elementy astronomii. Uczeń:

1) posługuje się prawem powszechnego ciążenia do opisu oddziaływania grawitacyjnego; wskazuje siłę grawitacji jako przyczynę spadania ciał;

Źródło: Rozporządzenie Ministra Edukacji Narodowej z dnia 14 lutego 2017 r. w sprawie podstawy programowej wychowania przedszkolnego oraz podstawy programowej kształcenia ogólnego dla szkoły podstawowej, w tym dla uczniów z niepełnosprawnością intelektualną w stopniu umiarkowanym lub znacznym, kształcenia ogólnego dla branżowej szkoły I stopnia, kształcenia ogólnego dla szkoły specjalnej przysposabiającej do pracy oraz kształcenia ogólnego dla szkoły policealnej (Dz. U. z 2017 r., poz. 356)

Oś czasu pomoże wprowadzić najważniejsze momenty i rozmyślania naukowców, które doprowadziły do sformułowania teorii powszechnej grawitacji.

Załącznik 2 Arkusz ćwiczeniowy

Karta doświadczenia

W doświadczeniu zmierzysz przyspieszenie spadających przedmiotów o różnych masach.

Pomocny ci w tym będzie czujnik (akcelerometr) wbudowany w smartfon wykorzystywany w aplikacji phyphox.

Aplikacja działa w ten sposób, że na wyświetlaczu pokazuje wartość przyspieszenia całkowitego lub jego składowe. Użyj zakładki "przyspieszenie całkowite".

Po uruchomieniu aplikacji i eksperymentu "przyspieszenie (bez g)" sprawdź, poruszając smartfonem, zmiany na wykresie. Gdy trzymasz telefon nieruchomo, na wykresie widzisz, że przyspieszenie wynosi zero.

Przygotowanie:

- 1. Sprawdź, czy masz: smartfon z aplikacją phyphox, woreczek zamykany lub pudełko, 2 jabłka, książkę (może być podręcznik do fizyki lub inny przedmiot, który zmieścisz w woreczku).
- 2. Ustalcie w grupie, z jakiej wysokości h (minimum 2 metry) będziecie spuszczać pudełko. Postarajcie się zachować takie same warunki przy każdym pomiarze.
- 3. Ustalcie, kto będzie odpowiedzialny za złapanie pudełka przy podłożu lub jak zamortyzujecie upadek smartfona (możecie ułożyć "poduszkę" z plecaków).
- 4. Otwórz eksperyment w aplikacji.
- Włóż do pudełka smartfon i 1 jabłko w taki sposób, żeby przed upuszczeniem uruchomić eksperyment przyciskiem >. Pomiar zatrzymujesz przyciskiem pauzy po upadnięciu na podłoże.
- 6. Wyjmij smartfon z pudełka i odczytaj z wykresu wartość przyspieszenia (powiększaj wykres, rozsuwając go dwoma palcami aż do uzyskania możliwości właściwego odczytu).
- 7. Zapisz wyniki z dokładnością do części setnych w tabeli poniżej. W ten sposób wykonaj 10 pomiarów.
- 8. W powyższy sposób przeprowadź pomiary dla wszystkich przedmiotów.
- 9. Oblicz wartość średnią przyspieszenia.
- 10. Porównaj wyniki otrzymane dla różnych przedmiotów.
- 11. Zapisz wnioski.

Powtórz pomiary dla dwóch jabłek oraz dla książki.

Masa badanego obiektu:

1 jabłko 2 jabłka książka

Tabela pomiarów

Nr pomiaru	Wartość przyspieszenia						
	1 jabłko	2 jabłka	książka				
1.							
2.							
3.							
4.							
5.							
6.							
7.							
8.							
9.							
10.							
Wartość średnia							

Wnioski:

Karta doświadczenia

W doświadczeniu zmierzysz przyspieszenie spadających przedmiotów o różnych masach oraz czas spadania.

Pomocny ci w tym będzie czujnik (akcelerometr) wbudowany w smartfon wykorzystywany w aplikacji phyphox.

Aplikacja działa w ten sposób, że na wyświetlaczu pokazuje wartość przyspieszenia całkowitego lub jego składowe. Użyj zakładki "przyspieszenie całkowite".

Po uruchomieniu aplikacji i eksperymentu "przyspieszenie (bez g)" sprawdź, poruszając smartfonem, zmiany na wykresie. Gdy trzymasz telefon nieruchomo, na wykresie widzisz, że przyspieszenie wynosi zero.

Przygotowanie:

- 1. Sprawdź, czy masz: smartfon z aplikacją phyphox, woreczek zamykany lub pudełko, 2 jabłka, książkę (może być podręcznik do fizyki lub inny przedmiot, który zmieścisz w woreczku).
- 2. Ustalcie w grupie, z jakiej wysokości h (minimum 2 metry) będziecie spuszczać pudełko. Postarajcie się zachować takie same warunki przy każdym pomiarze.
- 3. Ustalcie, kto będzie odpowiedzialny za złapanie pudełka przy podłożu lub jak zamortyzujecie upadek smartfona (możecie ułożyć "poduszkę" z plecaków).
- 4. Otwórz eksperyment w aplikacji.
- 5. Włóż do pudełka smartfon i 1 jabłko w taki sposób, żeby przed upuszczeniem uruchomić eksperyment przyciskiem D. Pomiar zatrzymujesz przyciskiem pauzy po upadnięciu na podłoże.
- 6. Wyjmij smartfon z pudełka i odczytaj z wykresu:
 - a) wartość przyspieszenia (powiększaj wykres, rozsuwając go dwoma palcami aż do uzyskania możliwości właściwego odczytu),
 - b) czas trwania spadku swobodnego (powiększaj wykres, rozsuwając go dwoma palcami aż do uzyskania możliwości właściwego odczytu).
- 7. Zapisz wyniki z dokładnością do części setnych w tabeli poniżej. W ten sposób wykonaj 10 pomiarów.
- 8. W powyższy sposób przeprowadź pomiary dla wszystkich przedmiotów.

- 9. Oblicz wartość średnią przyspieszenia i czasu spadku.
- 10. Porównaj wyniki otrzymane dla różnych przedmiotów.
- 11. Zapisz wnioski.

Masa badanego obiektu:

1 jabłko książka

Tabela pomiarów

Nr pomiaru	1 jabłko		2 jabłka		książka	
	Wartość przyspie- szenia [<u>m_</u>]	Czas spad- ku [s]	Wartość przyspie- szenia [<u>m</u>]	Czas spad- ku [s]	Wartość przyspie- szenia [<u>m_</u>]	Czas spad- ku [s]
1.						
2.						
3.						
4.						
5.						
6.						
7.						
8.						
9.						
10.						
Wartość średnia						

Wnioski:

